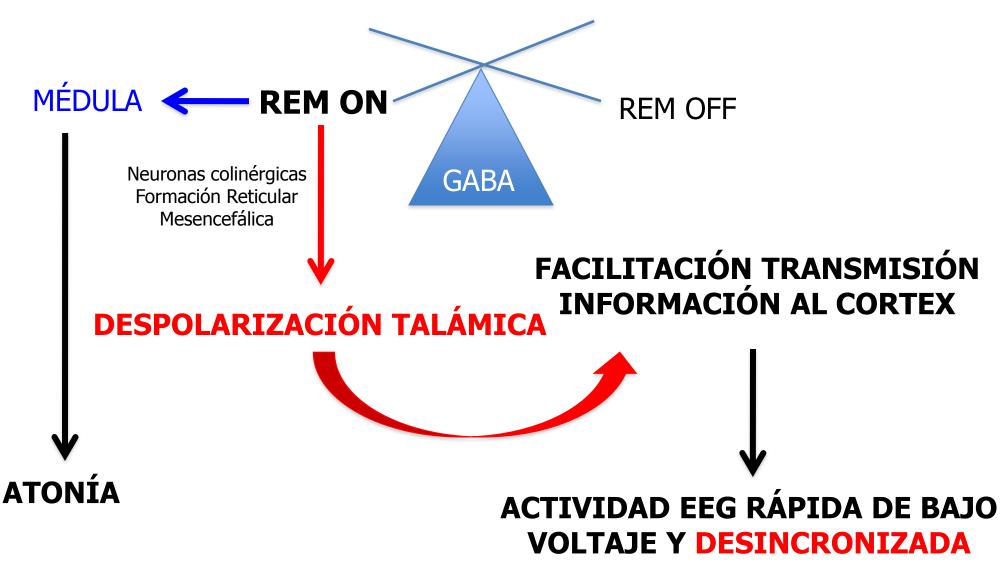


EPILEPSIA Y SUEÑO

HERNANDO PÉREZ DÍAZ
UNIDAD MULTIDISCIPLINAR DE TRASTORNOS DE LA VIGILIA Y EL SUEÑO
INSTITUTO DE ESPECIALIDADES NEUROLÓGICAS
QUIRÓN-SAGRADO CORAZÓN
SEVILLA

Sedativos (barbitúricos y BZD) y EGI del despertar

Ganancia ponderal (VPA, GBP, PGB, CBZ) y SAOS


Depresores del SNC (barbitúricos, BZD y PHT) y SAOS

ÍNDICE

- 1. FISIOPATOLOGÍA
- 1. TRASTORNOS DEL SUEÑO Y CRISIS
- 2. EL SUEÑO NOCTURNO EN EL PACIENTE EPILÉPTICO
- 1. SÍNDROMES EPILÉPTICOS Y SUEÑO

REM

FLIP-FLOP EN TEGMENTO MESOPONTINO

NREM

TÁLAMO INACTIVO

NO FACILITACIÓN DE TRANSMISIÓN DE INFORMACIÓN AL CORTEX

DESCARGAS INTRÍNSECAS DE LAS NEURONAS CORTICALES SINCRÓNICAS

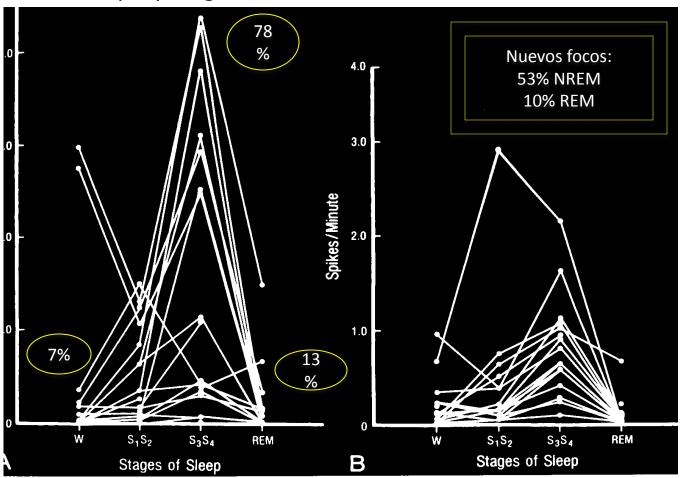
COMPLEJOS K, HUSOS DE SUEÑO Y ONDAS TÓNICAS DE FONDO

FISIOPATOLOGÍA

- < probabilidad de sumación espacial o temporal de alguna despolarización espontánea adicional</p>
 - < probabilidad de facilitación de propagación interictal

RELATIVE RATES TO REM SLEEP

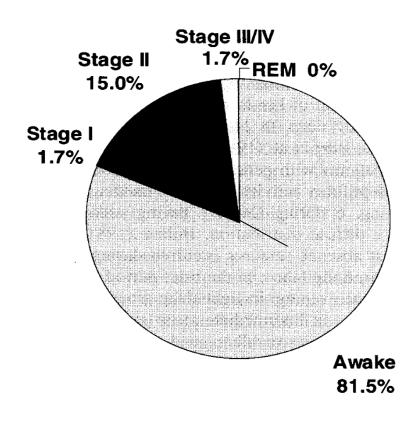
	W	N1	N2	N3
Generalized discharges	3.25	3.10	3.13	6.59
Rolandic Discharges	0.27	1.00	1.10	1.27
Focal discharges	1.11	1.75	1.69	2.46

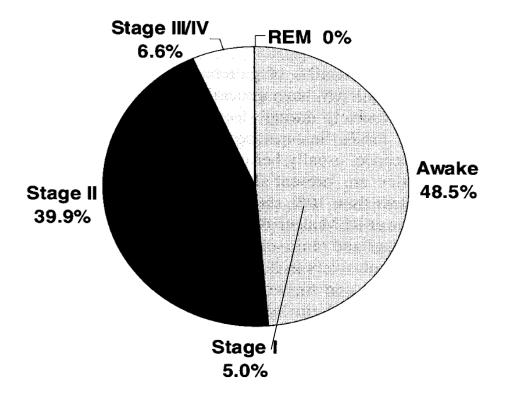

Diferencia W-REM por NT excitadores Neuronas con descarga máxima en W y mínima en REM: Serotoninérgicas del núcleo del rafe Noradrenérgicas del locus coeruleus Histaminanérgicas de núcleos túberomamilares

FISIOPATOLOGÍA

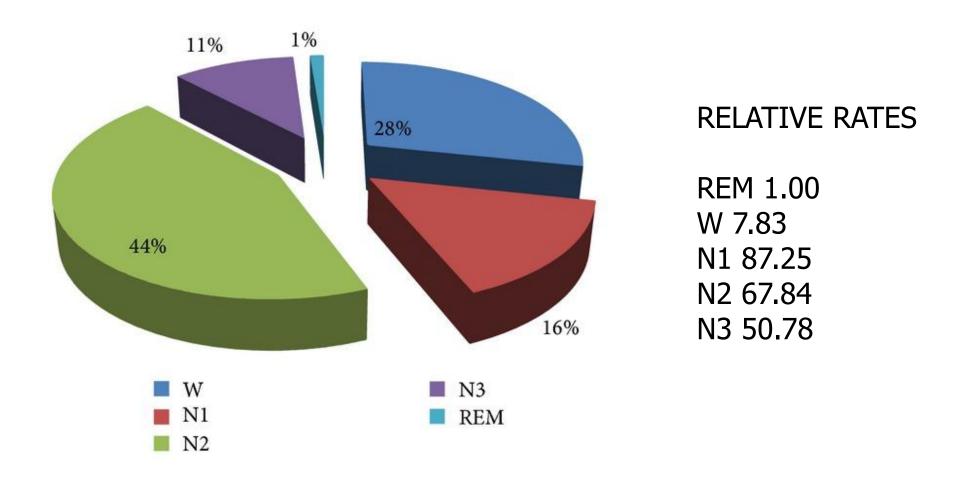
- NREM (> en N3): ampliación del campo y aparición de nuevos focos
- REM: actividad FOCAL muy localizada butilidad en cirugía
- El tono muscular, Ψ en NREM y ausente en REM, influye en la expresión clínica
- REM relativamente antiepiléptico: no génesis, propagación ni expresividad clínica

Efecto del sueño sobre la actividad epileptiforme interictal EEG


N= 40 ELT prequirúrgicas

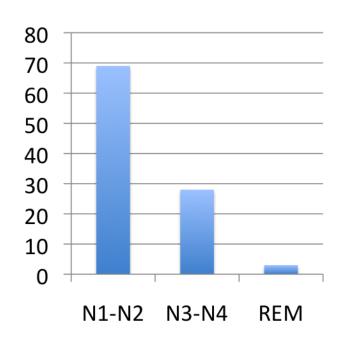


Distribución de las crisis generalizadas y focales durante la vigilia y el sueño en pacientes pediátricos



Localization-related (n = 363)

Distribución de las crisis focales



N=1990 crisis / 542 pacientes

Brain (1999), 122, 1017-1031

Nocturnal frontal lobe epilepsy A clinical and polygraphic overview of 100 consecutive cases

Federica Provini, Giuseppe Plazzi, Paolo Tinuper, Stefano Vandi, Elio Lugaresi and Pasquale Montagna

- CRISIS PARCIALES Y GENERALIZADAS: MÁXIMA EXPRESIÓN EN N2
 - ACTIVIDAD INTERCRÍTICA: AUMENTA A MEDIDA QUE SE PROFUNDIZA EN NREM (N3)
- LA SINCRONIZACIÓN CORTICAL (> EN N3) NO ES EL ÚNICO FACTOR IMPLICADO EN LA GÉNESIS DE LAS CRISIS
- INFLUENCIA CIRCADIANA: EMT y relación EGI-melatonina

Bazil CW. Epilepsia 38:56,1997 Dinner DS. J Clin Neurophysiol 2002;19:504-13 Manni R et al. Epilepsy Res 2005;67:73-80. Foldvary-Schaefer I 2006. *J Clin Neurophysiol*

3. TRASTORNOS DEL SUEÑO Y CRISIS

- Mayor frecuencia de determinado tipo de crisis por:
- 1. Fragmentación del sueño: predominio de fases superficiales y transiciones W-S o entre fases de sueño
- 2. Somnolencia diurna excesiva
- 3. Hipoxemia
- SAOS ⇒ CRISIS NOCTURNAS INDUCIDAS POR APNEA DEL SUEÑO
- Síndromes de hipoventilación durante el sueño
- PLMs: no hay estudios concluyentes

SAHS en epilepsia

Table 2 Differences between subjects with and without obstructive sleep apnea (OSA)

Characteristic	OSA, n = 13	No OSA, n = 26	p Value
SA/SDQ score, mean ± SD	28.9 ± 7.2	21.3 ± 5.1	0.003
Loud snoring or witnessed apnez, n (%)*	8 (62)	6 (23)	0.01
Body mass index, mean ± SD	28.6 ± 7.1	24.3 ± 4.2	0.03
Age, y, mean \pm SD	39.9 ± 9.2	32.9 ± 9.9	0.04
Male sex, n (%)	9 (69)	9 (35)	0.04
Seizures during sleep, n (%)	10 (77)	11 (42)	0.04
Temporal localization, n (%)	11 (85)	25 (81)	0.76
Seizures/mo, n, mean ± SD	12.1 ± 15.0	10.8 ± 12.1	0.77
Antiepileptic drugs, n, mean \pm SD	1.69 ± 0.6	1.50 ± 0.6	0.60
Epworth Sleepiness Scale score, mean \pm SD	7.3 ± 3.6	6.0 ± 3.6	0.33
Secondarily GTCS, n (%)	5 (38)	8 (31)	0.63
Subjects taking antidepressant medications, n (%)	3 (23)	5 (19)	0.54

Boldface indicates significant characteristics.

SA/SDQ = Sleep Apnea Scale of Sleep Disorders Questionnaire; GTCS = generalized tonic-clonic seizure.

N=39 pacientes con epilepsia refractaria sin quejas de sueño AHI >10 en el 33% (30%*) AHI >20 en el 13% (16%*)

Malow et al, Neurology 2000

* Foldvary-Schaefer et al, Epilepsy Behav 2013. N=190 + PSG.

^{*} Defined as occasionally, often, or almost always.

SAHS en epilepsia

Tratamiento del SAHS con CPAP mejora las crisis en el 40-86% de los pacientes y, en algunos casos, las hace desaparecer

Devinsky et al. Neurology,1994 Vaughn BV et al. Seizure,1996 Malow et al., Sleep, 1997.

Table 2. Comparisons between CPAP-compliant group and CPAP-noncompliant group						
	CPAP-compliant (n = 28) mean, median (IQR)	CPAP-noncompliant (n = 13) mean, median (IQR)	Statistical analysis			
ESS	12, 11 (8.2–15)	13.3, 14 (9.5–16.5)	p = 0.3			
AHI	17.1, 12 (9–21)	17, 10 (7.8–29)	p = 0.29			
Optimal CPAP	10.5, 10 (8-12)	9.4, 8 (8-11)	p = 0.31			
pressure (cm)						
Actual CPAP	10, 10 (8-12)	n/a	n/a			
treatment (cm)						
Baseline seizure frequency (/month)	I.8, I (I-3) 0,01	2.1, 1 (1–3.5) 0,36	p = 0.48			
Post-CPAP seizure frequency	1.1, 1 (0–2)	1.8, 1 (0.5–2.5)	p = 0.2			
(/month)						
N (%) of patients seizure-free post-CPAP	(16 (57%))	3 (23%)	RR = 1.54 (CI = 1.017-2.039); p = 0.05			
AEDs, median daily dose (median baseline	LEV (n = 14)	LEV (n = 6) 1,500 (12, 22)	n/a			
and treatment levels)	2,000 (10, 23)	PHT (n = 5) 300 (18, 14)				
	PHT (n = 9) 300 (15, 17)	OXC (n = 5) 900 (9, 18)				
	OXC (n = 6) 900 (18, 13)	GBP $(n = 3) 1,500 (4,7)$				
	LMG (n = 6) 300 (14, 17)	LMG (n = 2) 250 (13, 12)				
	VPA (n = 6) 1,500 (67, 54)	TPM $(n = 2) 200 (10, 7)$				
	TPM $(n = 4) 150 (9, 8)$	VPA (n = 1) 1,500 (71, 69)				
	GBP $(n = 2) 1,800 (9, 10)$					
	CBZ (n = 2) 800 (10, 11)					
Follow-up time	12 months (6-25)	10.5 months (6-19)	p = 0.1			

CPAP, continuous positive airway pressure; IQR, interquartile range; ESS, Epworth Sleepiness Scale; AHI, Apnea-hypopnea Index; AED, antiepileptic drug; LEV, levetiracetam; PHT, phenytoin; OXC, oxcarbazepine; LMG, lamotrigine; VPA, valproic acid; TPM, topiramate; GBP, gabapentin; CBZ, carbamazepine.

4. EL SUEÑO NOCTURNO EN EL PACIENTE EPILÉPTICO

- ☐ Sueño nocturno desorganizado por:
- 1. Crisis recientes
- 2. FAEs
- 3. Gravedad del síndrome epiléptico (EG sintomáticas o criptogénicas)
- 4. Modificaciones de los NTs por las crisis

Anomalías:

- 1. ↑ latencia de inicio del sueño
- 2. 个 n° y duración de despertares
- 3. ↓ eficiencia de sueño
- 4. ↓ grafoelementos característicos (complejos K y OA vértex)
- 5. ↓ proporción de sueño REM
- 6. Crisis generalizada en W y NREM retrasa horas la aparición de REM
- 7. ELT>ELF/EGI

El epiléptico se queja de HIPERSOMNIA (30-50%) e INSOMNIO (50%) No siempre están en relación con FAEs (SAHS y mala higiene) Epilépticos sin tratamiento > hipersomnia que controles Manifestación exclusiva como DESPERTARES PAROXÍSITICOS INEXPLICABLES

SUDEP

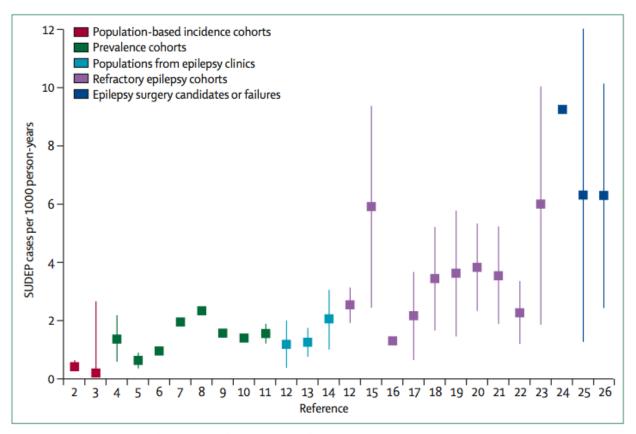
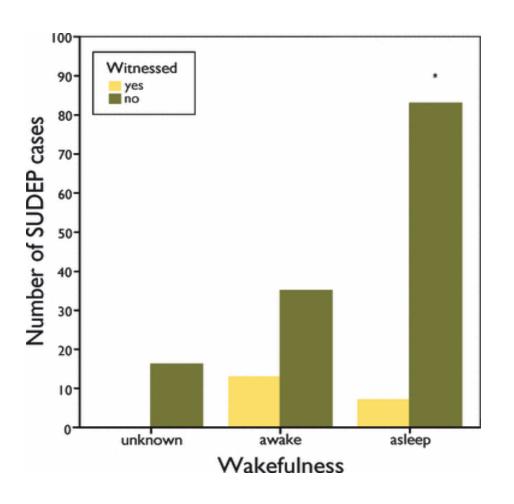



Figure 1: Incidence rates of SUDEP in 26 studies in different epilepsy populations 95% CIs are shown where data were available. Reproduced from Tomson and colleagues.³ SUDEP=sudden unexpected death in epilepsy.

20 veces superior a la población general

Sudden unexpected death in epilepsy: People with nocturnal seizures may be at highest risk

- Sueño sobre todo si el paciente duerme sólo
- Hipoventilación central u obstructiva
- Arritmias
- ◆ Disfunción autonómica
- FAES con efecto depresor respiratorio

5. SÍNDROMES EPILÉPTICOS Y SUEÑO

- EGI (grand mal del despertar, EMJ y ausencias): EPILEPSIAS DEL DESPERTAR
- EG sintomáticas o criptogénicas (West, Lennox-Gastaut y mioclónicas progresivas): difícil diferenciación entre los estados W/NR/R
- EPILEPSIAS FOCALES
- SÍNDROMES EPILÉPTICOS RELACIONADOS CON EL SUEÑO:
 - 1. Epilepsia benigna de la infancia con puntas centrotemporales (rolándica)
 - 2. Epilepsia benigna de la infancia con paroxismos occipitales
 - 3. POCS o ESES
 - 4. ADNFLE
 - 5. Epilepsia familiar focal con variables focos

SÍNDROMES EPILÉPTICOS RELACIONADOS CON EL SUEÑO

- EPILEPSIA BENIGNA DE LA INFANCIA CON PUNTAS CENTROTEMPORALES (ROLÁNDICA):
- 1. Cognitivamente normales
- 2. Crisis parciales operculares frecuentemente sólo durante el sueño
- Descargas en NREM e incluso en REM (sólo durante el sueño en 1/3)
- 4. Pronóstico excelente (remisión en adolescencia)
- 5. La anomalía EEG se hereda de forma AD y sólo un 25% de los niños tienen crisis: hallazgo PSG sin significación clínica
- POCS (punta-onda continua durante el sueño de onda lenta) o ESES (encephalopathy with status epilepticus during sleep):
- 1. NIÑOS con desarrollo previo normal o déficits neurológicos motores
- 2. Proporción de P-O difusa > 85% en NREM que desaparece en REM
- 3. NO crisis (GTC y mioclónicas) en vigilia
- 4. Retraso/regresión cognitiva
- 5. Landau-Kleffner: afasia progresiva adquirida e inatención a estímulos auditivos
- 6. Las crisis y la actividad EEG desaparecen en la 2° década de la vida

Focal sharp-slow wave discharges, wich became continuous during sleep

Alteration of the *in vivo* nicotinic receptor density in ADNFLE patients: a PET study

F. Picard, D. Bruel, D. Servent, W. Saba, C. Fruchart-Gaillard, M.-A. Schöllhorn-Peyronneau, D. Roumenov, E. Brodtkorb, S. Zuberi, A. Gambardella, B. Steinborn, A. Hufnagel, H. Valette and M. Bottlaender

- CANALOPATÍA
- 2. Genes CHRNA4, CHRNB2 y CHRNA2
- 3. Codifican subunidades α y β del receptor nicotínico de acetilcolina
- 4. Cromosoma 20 q13.2-q13.3 (15q24 y 1p21.1)

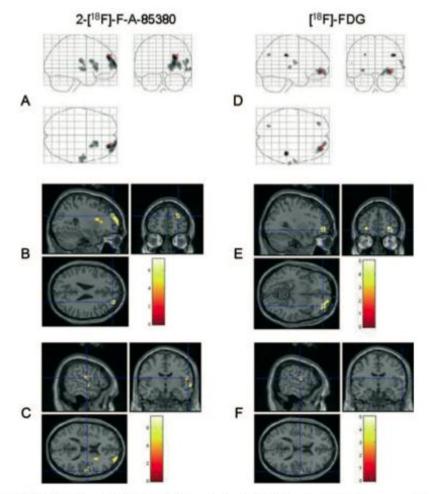
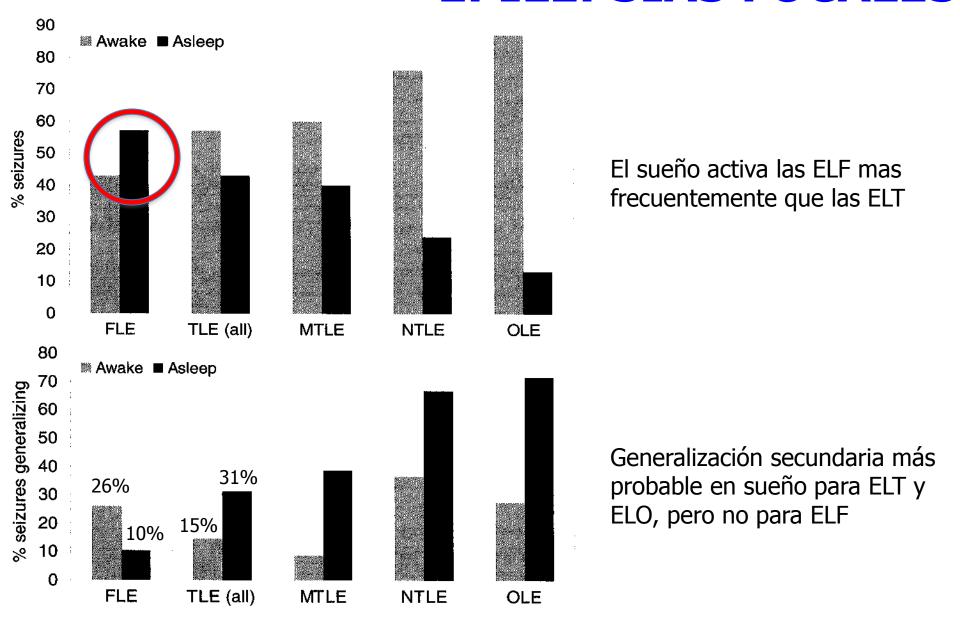



Fig. 4 SPM analysis of [10 F]-F-A-85380 and of [10 F]-FDG PET hypofixation in ADNFLE patients. (A-C) correspond to the [10 F]-F-A-85380 analysis (patients n = 8; controls n = 7; $P_{uncorrected} < 0.001$, $P_{corrected}$ at cluster level < 0.05). (D-F) correspond to the [18 F]-FDG analysis (patients n = 5; controls n = 30; $P_{uncorrected} < 0.001$). Z-values of statistical significance are represented by the colour bar on the right. The figure focuses on the prefrontal region (**B** and **E**) with the region of glucose hypometabolism (**E**) being beneath the region of F-A-85380 hypofixation (**B**). The right side is on the right on the coronal MRI images. Parts **C** and **F** show that the regions of glucose hypometabolism and of F-A-85380 hypofixation in the right opercular cortex are superimposable.

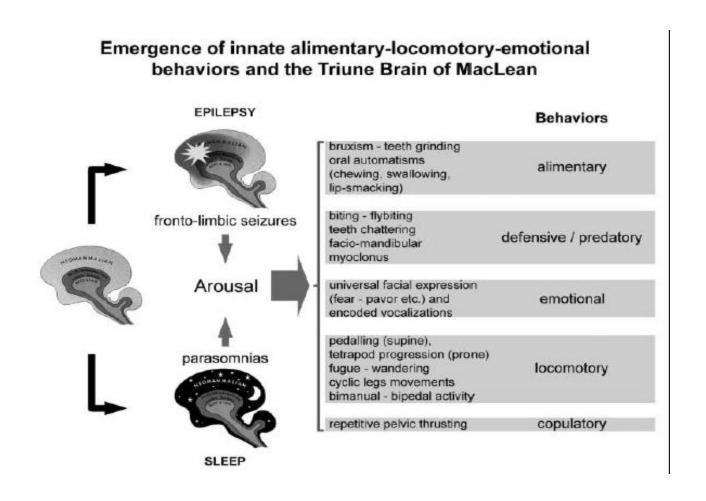
ADNFLE

- 1. NO INFRECUENTE
- 2. 85% < de 20 años (2 meses-56 años)
- 3. "Clusters" de crisis frontales breves: posturas tónicas/distónicas (AMS) y vocalizaciones
- 4. Manifestación aislada como innumerables despertares: "hipersomnia o insomnio"
- 5. Manifestación como pesadillas recurrentes: diagnostico de estas o de terrores nocturnos
- 6. EEG intercrítico normal y crítico con actividad rápida/puntas en el 40-88%
- 7. Neuroimagen normal
- 8. Sujetos cognitivamente normales
- 9. CBZ (refractariedad en el 30%). Añadir CLB. Parches de nicotina coadyuvantes.

EPILEPSIAS FOCALES

EPILEPSIAS DEL LÓBULO FRONTAL

- 1. Duración breve (<60seg)
- 2. Clusters (10-40/noche) → clave en el diagnóstico (parasomnias NREM)
- 3. Conciencia a menudo preservada, incluso, con componente motor bilateral
- 4. No confusión postictal
- 5. Comportamientos bizarros/hipermotores llevan al diagnóstico de pseudocrisis
- 6. Inaccesible con frecuencia al EEG: normal o actividad propagada de un foco distante
- 7. Los artefactos musculares y la rápida difusión dificultan reconocer el inicio ictal
- ALTA RENTABILIDAD del VPSG

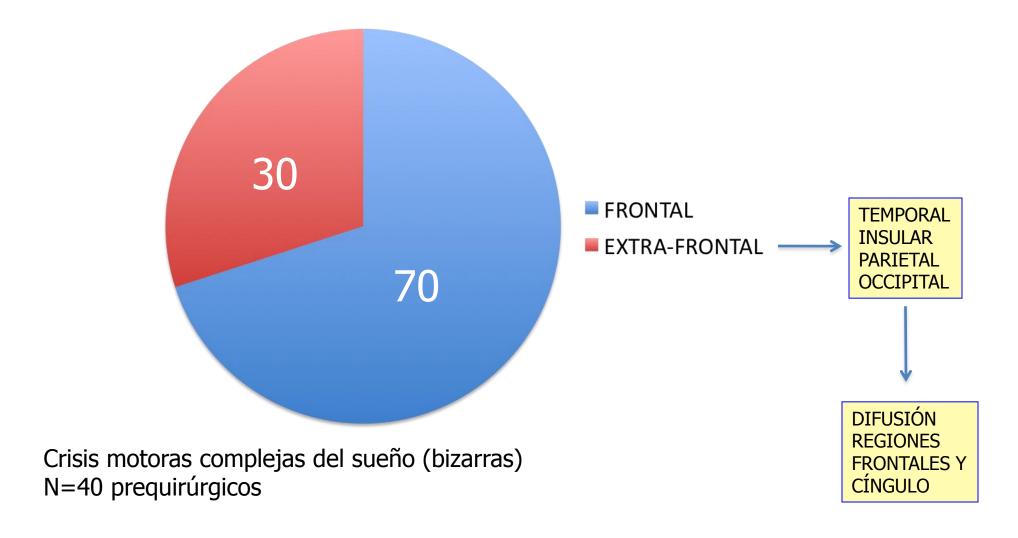

DX DIFERENCIAL en las EPILEPSIAS FOCALES:

LOS MAYORES PROBLEMAS LOS PLANTEAN LAS EPILEPSIAS FRONTALES

- PARASOMNIAS:
- 1. NREM: no estereotipadas, interacción, N3, < frec y 1º tercio de la noche
 - a) Crisis con conciencia preservada
 - b) Crisis dacrísticas: terrores nocturnos
- 2. RBD: crisis dacrísticas y gelásticas
- PSICOGENICIDAD

C.A. Tassinari • G. Rubboli • E. Gardella • G. Cantalupo • G. Calandra-Buonaura • M. Vedovello M. Alessandria • G. Gandini • S. Cinotti • N. Zamponi • S. Meletti

Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach



Nocturnal frontal lobe epilepsy A clinical and polygraphic overview of 100 consecutive cases

Federica Provini, Giuseppe Plazzi, Paolo Tinuper, Stefano Vandi, Elio Lugaresi and Pasquale Montagna

- Neuroimagen + vs -
- ESPECTRO de distintos tipos de epilepsia: continuidad PA-NPD-ENW
- Repetición en intervalos de 30 segundos a 2 minutos
- ESTEREOTIPIA
- 1) Paroxysmal arousals:
- breves (< 20 segundos)</p>
- 2) Distonía paroxística nocturna:
- hasta 2 minutos
- crisis tónicas asimétricas
- 3) Episodic nocturnal wanderings:
- hasta 3 minutos
- crisis hipermotoras bizarras
- lesiones

Epileptic motor behaviors during sleep: anatomo- electro-clinical features

FCD 90% (type 2)

MUCHAS GRACIAS